A Hybrid Computing Adaptive Filtering Methods for Parameter Estimation of Nonstationary Power Signals
نویسندگان
چکیده
This paper presents a new approach in the detection, localization, and classification of frequency and amplitude changes in nonstationary signal waveforms using a variable window shorttime Fourier Transform (STFT) known as ST in short and an Extended Complex Kalman Filter (CEKF). Unlike the fixed window STFT, the variable window Short-time Fourier Transform has excellent time-frequency resolution characteristics and provides detection, localization, and visual patterns suitable for automatic recognition of time-varying signal patterns. The CEKF, on the other hand, provides automatic classification and measurements of the frequent amplitude, and phase of sinusoids embedded in noise. The technique is applied to both simulated and experimentally obtained waveform disturbances in the presence of additive noise and the results reveal significant accuracy in completely localizing the changes in amplitude, frequency, and phase of nonstationary sinusoids in noise.
منابع مشابه
Harmonics Estimation in Power Systems using a Fast Hybrid Algorithm
In this paper a novel hybrid algorithm for harmonics estimation in power systems is proposed. The estimation of the harmonic components is a nonlinear problem due to the nonlinearity of phase of sinusoids in distorted waveforms. Most researchers implemented nonlinear methods to extract the harmonic parameters. However, nonlinear methods for amplitude estimation increase time of convergence. Hen...
متن کاملEstimation of harmonic interference parameters of surface-NMR signal using an adaptive method and residual signal power
Surface nuclear magnetic resonance (surface-NMR) method is a well-known tool for determining the water-bearing layers and subsurface resistivity structure. Harmonic interference is an inevitable interference in surface-NMR measurements. Accurate estimation of harmonic interference parameters (i.e., fundamental frequency, phase and amplitude) leads to better retrieval of power-line harmonics and...
متن کاملApplication of Soft Computing Methods for the Estimation of Roadheader Performance from Schmidt Hammer Rebound Values
Estimation of roadheader performance is one of the main topics in determining the economics of underground excavation projects. The poor performance estimation of roadheader scan leads to costly contractual claims. In this paper, the application of soft computing methods for data analysis called adaptive neuro-fuzzy inference system- subtractive clustering method (ANFIS-SCM) and artificial neu...
متن کاملAdaptive-Filtering-Based Algorithm for Impulsive Noise Cancellation from ECG Signal
Suppression of noise and artifacts is a necessary step in biomedical data processing. Adaptive filtering is known as useful method to overcome this problem. Among various contaminants, there are some situations such as electrical activities of muscles contribute to impulsive noise. This paper deals with modeling real-life muscle noise with α-stable probability distribution and adaptive filterin...
متن کاملHybrid Models Performance Assessment to Predict Flow of Gamasyab River
Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010